743. Network Delay Time

 

There are N network nodes, labelled 1 to N.

Given times, a list of travel times as directededges times[i] = (u, v, w), where u is the source node, v is the target node, and w is the time it takes for a signal to travel from source to target.

Now, we send a signal from a certain node K. How long will it take for all nodes to receive the signal? If it is impossible, return -1.

 

Example 1:

Input: times = [[2,1,1],[2,3,1],[3,4,1]], N = 4, K = 2
Output: 2

 

Note:

  1. N will be in the range [1, 100].
  2. K will be in the range [1, N].
  3. The length of times will be in the range [1, 6000].
  4. All edges times[i] = (u, v, w) will have 1 <= u, v <= N and 0 <= w <= 100.

 

这道题给了我们一些有向边,又给了一个结点K,问至少需要多少时间才能从K到达任何一个结点。这实际上是一个有向图求最短路径的问题,求出K点到每一个点到最短路径,然后取其中最大的一个就是需要的时间了。可以想成从结点K开始有水流向周围扩散,当水流到达最远的一个结点时,那么其他所有的结点一定已经流过水了。最短路径的常用解法有迪杰斯特拉算法 Dijkstra Algorithm, 弗洛伊德算法 Floyd-Warshall Algorithm, 和贝尔曼福特算法 Bellman-Ford Algorithm,其中,Floyd 算法是多源最短路径,即求任意点到任意点到最短路径,而 Dijkstra 算法和 Bellman-Ford 算法是单源最短路径,即单个点到任意点到最短路径。这里因为起点只有一个K,所以使用单源最短路径就行了。这三种算法还有一点不同,就是 Dijkstra 算法处理有向权重图时,权重必须为正,而另外两种可以处理负权重有向图,但是不能出现负环,所谓负环,就是权重均为负的环。为啥呢,这里要先引入松弛操作 Relaxtion,这是这三个算法的核心思想,当有对边 (u, v) 是结点u到结点v,如果 dist(v) > dist(u) + w(u, v),那么 dist(v) 就可以被更新,这是所有这些的算法的核心操作。Dijkstra 算法是以起点为中心,向外层层扩展,直到扩展到终点为止。根据这特性,用 BFS 来实现时再好不过了,注意 while 循环里的第一层 for 循环,这保证了每一层的结点先被处理完,才会进入进入下一层,这种特性在用 BFS 遍历迷宫统计步数的时候很重要。对于每一个结点,都跟其周围的结点进行 Relaxtion 操作,从而更新周围结点的距离值。为了防止重复比较,需要使用 visited 数组来记录已访问过的结点,最后在所有的最小路径中选最大的返回,注意,如果结果 res 为 INT_MAX,说明有些结点是无法到达的,返回 -1。普通的实现方法的时间复杂度为 O(V2),基于优先队列的实现方法的时间复杂度为 O(E + VlogV),其中V和E分别为结点和边的个数,这里多说一句,Dijkstra 算法这种类贪心算法的机制,使得其无法处理有负权重的最短距离,还好这道题的权重都是正数,参见代码如下:

 

解法一:

class Solution {
public:
    int networkDelayTime(vector<vector<int>>& times, int N, int K) {
        int res = 0;
        vector<vector<int>> edges(101, vector<int>(101, -1));
        queue<int> q{{K}};
        vector<int> dist(N + 1, INT_MAX);
        dist[K] = 0;
        for (auto e : times) edges[e[0]][e[1]] = e[2];
        while (!q.empty()) {
            unordered_set<int> visited;
            for (int i = q.size(); i > 0; --i) {
                int u = q.front(); q.pop();
                for (int v = 1; v <= 100; ++v) {
                    if (edges[u][v] != -1 && dist[u] + edges[u][v] < dist[v]) {
                        if (!visited.count(v)) {
                            visited.insert(v);
                            q.push(v);
                        }
                        dist[v] = dist[u] + edges[u][v];
                    }
                }
            }
        }
        for (int i = 1; i <= N; ++i) {
            res = max(res, dist[i]);
        }
        return res == INT_MAX ? -1 : res;
    }
};

 

下面来看基于 Bellman-Ford 算法的解法,时间复杂度是 O(VE),V和E分别是结点和边的个数。这种算法是基于 DP 来求全局最优解,原理是对图进行 V - 1 次松弛操作,这里的V是所有结点的个数(为啥是 V-1 次呢,因为最短路径最多只有 V-1 条边,所以只需循环 V-1 次),在重复计算中,使得每个结点的距离被不停的更新,直到获得最小的距离,这种设计方法融合了暴力搜索之美,写法简洁又不失优雅。之前提到了,Bellman-Ford 算法可以处理负权重的情况,但是不能有负环存在,一般形式的写法中最后一部分是检测负环的,如果存在负环则报错。不能有负环原因是,每转一圈,权重和都在减小,可以无限转,那么最后的最小距离都是负无穷,无意义了。没有负环的话,V-1 次循环后各点的最小距离应该已经收敛了,所以在检测负环时,就再循环一次,如果最小距离还能更新的话,就说明存在负环。这道题由于不存在负权重,所以就不检测了,参见代码如下:

 

解法二:

class Solution {
public:
    int networkDelayTime(vector<vector<int>>& times, int N, int K) {
        int res = 0;
        vector<int> dist(N + 1, INT_MAX);
        dist[K] = 0;
        for (int i = 1; i < N; ++i) {
            for (auto e : times) {
                int u = e[0], v = e[1], w = e[2];
                if (dist[u] != INT_MAX && dist[v] > dist[u] + w) {
                    dist[v] = dist[u] + w;
                }
            }
        }
        for (int i = 1; i <= N; ++i) {
            res = max(res, dist[i]);
        }
        return res == INT_MAX ? -1 : res;
    }
};

 

下面这种解法是 Bellman Ford 解法的优化版本,由热心网友旅叶提供。之所以能提高运行速度,是因为使用了队列 queue,这样对于每个结点,不用都松弛所有的边,因为大多数的松弛计算都是无用功。优化的方法是,若某个点的 dist 值不变,不去更新它,只有当某个点的 dist 值被更新了,才将其加入 queue,并去更新跟其相连的点,同时还需要加入 HashSet,以免被反复错误更新,这样的时间复杂度可以优化到 O(E+V)。Java 版的代码在评论区三楼,旅叶声称可以 beat 百分之九十多,但博主改写的这个 C++ 版本的却只能 beat 百分之二十多,hmm,因缺斯汀。不过还是要比上面的解法二快很多,博主又仔细看了看,发现很像解法一和解法二的混合版本哈,参见代码如下:

 

解法三:

class Solution {
public:
    int networkDelayTime(vector<vector<int>>& times, int N, int K) {
        int res = 0;
        unordered_map<int, vector<pair<int, int>>> edges;
        vector<int> dist(N + 1, INT_MAX);
        queue<int> q{{K}};
        dist[K] = 0;
        for (auto e : times) edges[e[0]].push_back({e[1], e[2]});
        while (!q.empty()) {
            int u = q.front(); q.pop();
            unordered_set<int> visited;
            for (auto e : edges[u]) {
                int v = e.first, w = e.second;
                if (dist[u] != INT_MAX && dist[u] + w < dist[v]) {
                    dist[v] = dist[u] + w;
                    if (visited.count(v)) continue;
                    visited.insert(v);
                    q.push(v);
                }
            }
        }
        for (int i = 1; i <= N; ++i) {
            res = max(res, dist[i]);
        }
        return res == INT_MAX ? -1 : res;
    }
};

 

讨论:最后再来说说这个 Floyd 算法,这也是一种经典的动态规划算法,目的是要找结点i到结点j的最短路径。而结点i到结点j的走法就两种可能,一种是直接从结点i到结点j,另一种是经过若干个结点k到达结点j。所以对于每个中间结点k,检查 dist(i, k) + dist(k, j) < dist(i, j) 是否成立,成立的话就松弛它,这样遍历完所有的结点k,dist(i, j) 中就是结点i到结点j的最短距离了。时间复杂度是 O(V3),处处透露着暴力美学。除了这三种算法外,还有一些很类似的优化算法,比如 Bellman-Ford 的优化算法- SPFA 算法,还有融合了 Bellman-Ford 和 Dijkstra 算法的高效的多源最短路径算法- Johnson 算法,这里就不过多赘述了,感兴趣的童鞋可尽情的 Google 之~

 

Github 同步地址:

https://github.com/grandyang/leetcode/issues/743

 

参考资料:

https://leetcode.com/problems/network-delay-time/description/

https://leetcode.com/problems/network-delay-time/discuss/109982/C++-Bellman-Ford

https://leetcode.com/problems/network-delay-time/discuss/109968/Simple-JAVA-Djikstra's-(PriorityQueue-optimized)-Solution-with-explanation

 

LeetCode All in One 题目讲解汇总(持续更新中…)


转载请注明来源于 Grandyang 的博客 (grandyang.com),欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 grandyang@qq.com

💰


微信打赏


Venmo 打赏

(欢迎加入博主的知识星球,博主将及时答疑解惑,并分享刷题经验与总结,试运营期间前五十位可享受半价优惠~)

×

Help us with donation