# 505. The Maze II

There is a ball in a maze with empty spaces and walls. The ball can go through empty spaces by rolling up, down, left or right, but it won’t stop rolling until hitting a wall. When the ball stops, it could choose the next direction.

Given the ball’s start position, the destination and the maze, find the shortest distance for the ball to stop at the destination. The distance is defined by the number of empty spaces traveled by the ball from the start position (excluded) to the destination (included). If the ball cannot stop at the destination, return -1.

The maze is represented by a binary 2D array. 1 means the wall and 0 means the empty space. You may assume that the borders of the maze are all walls. The start and destination coordinates are represented by row and column indexes.

Example 1

``````Input 1: a maze represented by a 2D array

0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
1 1 0 1 1
0 0 0 0 0

Input 2: start coordinate (rowStart, colStart) = (0, 4)
Input 3: destination coordinate (rowDest, colDest) = (4, 4)

Output: 12
Explanation: One shortest way is : left -> down -> left -> down -> right -> down -> right.
The total distance is 1 + 1 + 3 + 1 + 2 + 2 + 2 = 12.
``````

Example 2

``````Input 1: a maze represented by a 2D array

0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
1 1 0 1 1
0 0 0 0 0

Input 2: start coordinate (rowStart, colStart) = (0, 4)
Input 3: destination coordinate (rowDest, colDest) = (3, 2)

Output: -1
Explanation: There is no way for the ball to stop at the destination.
``````

Note:

1. There is only one ball and one destination in the maze.
2. Both the ball and the destination exist on an empty space, and they will not be at the same position initially.
3. The given maze does not contain border (like the red rectangle in the example pictures), but you could assume the border of the maze are all walls.
4. The maze contains at least 2 empty spaces, and both the width and height of the maze won’t exceed 100.

``````class Solution {
public:
int shortestDistance(vector<vector<int>>& maze, vector<int>& start, vector<int>& destination) {
int m = maze.size(), n = maze[0].size();
vector<vector<int>> dists(m, vector<int>(n, INT_MAX));
vector<vector<int>> dirs{{0,-1},{-1,0},{0,1},{1,0}};
queue<pair<int, int>> q;
q.push({start[0], start[1]});
dists[start[0]][start[1]] = 0;
while (!q.empty()) {
auto t = q.front(); q.pop();
for (auto d : dirs) {
int x = t.first, y = t.second, dist = dists[t.first][t.second];
while (x >= 0 && x < m && y >= 0 && y < n && maze[x][y] == 0) {
x += d[0];
y += d[1];
++dist;
}
x -= d[0];
y -= d[1];
--dist;
if (dists[x][y] > dist) {
dists[x][y] = dist;
if (x != destination[0] || y != destination[1]) q.push({x, y});
}
}
}
int res = dists[destination[0]][destination[1]];
return (res == INT_MAX) ? -1 : res;
}
};
``````

``````class Solution {
public:
int shortestDistance(vector<vector<int>>& maze, vector<int>& start, vector<int>& destination) {
int m = maze.size(), n = maze[0].size();
vector<vector<int>> dists(m, vector<int>(n, INT_MAX));
vector<vector<int>> dirs{{0,-1},{-1,0},{0,1},{1,0}};
auto cmp = [](vector<int>& a, vector<int>& b) {
return a[2] > b[2];
};
priority_queue<vector<int>, vector<vector<int>>, decltype(cmp) > pq(cmp);
pq.push({start[0], start[1], 0});
dists[start[0]][start[1]] = 0;
while (!pq.empty()) {
auto t = pq.top(); pq.pop();for (auto dir : dirs) {
int x = t[0], y = t[1], dist = dists[t[0]][t[1]];
while (x >= 0 && x < m && y >= 0 && y < n && maze[x][y] == 0) {
x += dir[0];
y += dir[1];
++dist;
}
x -= dir[0];
y -= dir[1];
--dist;
if (dists[x][y] > dist) {
dists[x][y] = dist;
if (x != destination[0] || y != destination[1]) pq.push({x, y, dist});
}
}
}
int res = dists[destination[0]][destination[1]];
return (res == INT_MAX) ? -1 : res;
}
};
``````

Github 同步地址：

https://github.com/grandyang/leetcode/issues/505

The Maze

The Maze III

https://leetcode.com/problems/the-maze-ii/

https://leetcode.com/problems/the-maze-ii/discuss/98401/java-accepted-dfs

https://leetcode.com/problems/the-maze-ii/discuss/98456/simple-c-bfs-solution

https://leetcode.com/problems/the-maze-ii/discuss/98427/2-Solutions:-BFS-and-Dijkstra's.-Detailed-explanation..-But-why-is-BFS-faster

LeetCode All in One 题目讲解汇总(持续更新中…)

 微信打赏 Venmo 打赏
（欢迎加入博主的知识星球，博主将及时答疑解惑，并分享刷题经验与总结，试运营期间前五十位可享受半价优惠～）

×

Help us with donation