# 210. Course Schedule II

There are a total of  n  courses you have to take, labeled from `0` to `n-1`.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: `[0,1]`

Given the total number of courses and a list of prerequisite pairs, return the ordering of courses you should take to finish all courses.

There may be multiple correct orders, you just need to return one of them. If it is impossible to finish all courses, return an empty array.

Example 1:

``````Input: 2, [[1,0]]
Output: [0,1]
Explanation: There are a total of 2 courses to take. To take course 1 you should have finished
course 0. So the correct course order is [0,1] .
``````

Example 2:

``````Input: 4, [[1,0],[2,0],[3,1],[3,2]]
Output: [0,1,2,3] or [0,2,1,3]
Explanation: There are a total of 4 courses to take. To take course 3 you should have finished both
courses 1 and 2. Both courses 1 and 2 should be taken after you finished course 0.
So one correct course order is [0,1,2,3]. Another correct ordering is [0,2,1,3] .
``````

Note:

1. The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
2. You may assume that there are no duplicate edges in the input prerequisites.

Hints:

1. This problem is equivalent to finding the topological order in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
2. Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
3. Topological sort could also be done via BFS.

``````class Solution {
public:
vector<int> findOrder(int numCourses, vector<pair<int, int>>& prerequisites) {
vector<int> res;
vector<vector<int> > graph(numCourses, vector<int>(0));
vector<int> in(numCourses, 0);
for (auto &a : prerequisites) {
graph[a.second].push_back(a.first);
++in[a.first];
}
queue<int> q;
for (int i = 0; i < numCourses; ++i) {
if (in[i] == 0) q.push(i);
}
while (!q.empty()) {
int t = q.front();
res.push_back(t);
q.pop();
for (auto &a : graph[t]) {
--in[a];
if (in[a] == 0) q.push(a);
}
}
if (res.size() != numCourses) res.clear();
return res;
}
};
``````

Github 同步地址：

https://github.com/grandyang/leetcode/issues/210

Minimum Height Trees

Course Schedule

Course Schedule III

Sequence Reconstruction

https://leetcode.com/problems/course-schedule-ii/

https://leetcode.com/problems/course-schedule-ii/discuss/59342/Java-DFS-double-cache-visiting-each-vertex-once-433ms

LeetCode All in One 题目讲解汇总(持续更新中…)

 微信打赏 Venmo 打赏 （欢迎加入博主的知识星球，博主将及时答疑解惑，并分享刷题经验与总结，试运营期间前五十位可享受半价优惠～） ×

Help us with donation  