# 1007. Minimum Domino Rotations For Equal Row

In a row of dominoes, `A[i]` and `B[i]` represent the top and bottom halves of the `ith` domino.  (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.)

We may rotate the `ith` domino, so that `A[i]` and `B[i]` swap values.

Return the minimum number of rotations so that all the values in `A` are the same, or all the values in `B` are the same.

If it cannot be done, return `-1`.

Example 1:

``````Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
Output: 2
Explanation:
The first figure represents the dominoes as given by A and B: before we do any rotations.
If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure.
``````

Example 2:

``````Input: A = [3,5,1,2,3], B = [3,6,3,3,4]
Output: -1
Explanation:
In this case, it is not possible to rotate the dominoes to make one row of values equal.
``````

Constraints:

• `2 <= A.length == B.length <= 2 * 104`
• `1 <= A[i], B[i] <= 6`

``````class Solution {
public:
int minDominoRotations(vector<int>& A, vector<int>& B) {
int res = INT_MAX, n = A.size();
vector<int> cntA(7), cntB(7), same(7);
for (int i = 0; i < n; ++i) {
++cntA[A[i]];
++cntB[B[i]];
if (A[i] == B[i]) ++same[A[i]];
}
for (int i = 1; i <= 6; ++i) {
if (cntA[i] + cntB[i] - same[i] == n) {
return n - max(cntA[i], cntB[i]);
}
}
return -1;
}
};
``````

Github 同步地址:

https://github.com/grandyang/leetcode/issues/1007

https://leetcode.com/problems/minimum-domino-rotations-for-equal-row/

https://leetcode.com/problems/minimum-domino-rotations-for-equal-row/discuss/252242/JavaC%2B%2BPython-Different-Ideas

LeetCode All in One 题目讲解汇总(持续更新中…)

 微信打赏 Venmo 打赏
（欢迎加入博主的知识星球，博主将及时答疑解惑，并分享刷题经验与总结，试运营期间前五十位可享受半价优惠～）

×

Help us with donation