662. Maximum Width of Binary Tree

 

Given a binary tree, write a function to get the maximum width of the given tree. The width of a tree is the maximum width among all levels. The binary tree has the same structure as a full binary tree, but some nodes are null.

The width of one level is defined as the length between the end-nodes (the leftmost and right most non-null nodes in the level, where the null nodes between the end-nodes are also counted into the length calculation.

Example 1:

Input: 

           1
         /   \
        3     2
       / \     \  
      5   3     9 

Output: 4
Explanation: The maximum width existing in the third level with the length 4 (5,3,null,9).

Example 2:

Input: 

          1
         /  
        3    
       / \       
      5   3     

Output: 2
Explanation: The maximum width existing in the third level with the length 2 (5,3).

Example 3:

Input: 

          1
         / \
        3   2 
       /        
      5      

Output: 2
Explanation: The maximum width existing in the second level with the length 2 (3,2).

Example 4:

Input: 

          1
         / \
        3   2
       /     \  
      5       9 
     /         \
    6           7
Output: 8
Explanation:The maximum width existing in the fourth level with the length 8 (6,null,null,null,null,null,null,7).

Note: Answer will in the range of 32-bit signed integer.

 

这道题让我们求二叉树的最大宽度,根据题目中的描述可知,这里的最大宽度不是满树的时候的最大宽度,如果是那样的话,肯定是最后一层的结点数最多。这里的最大宽度应该是两个存在的结点中间可容纳的总的结点个数,中间的结点可以为空。那么其实只要我们知道了每一层中最左边和最右边的结点的位置,我们就可以算出这一层的宽度了。所以这道题的关键就是要记录每一层中最左边结点的位置,我们知道对于一棵完美二叉树,如果根结点是深度1,那么每一层的结点数就是 2n-1,那么每个结点的位置就是 [1, 2n-1] 中的一个,假设某个结点的位置是i,那么其左右子结点的位置可以直接算出来,为 2i 和 2i+1,可以自行带例子检验。由于之前说过,我们需要保存每一层的最左结点的位置,那么我们使用一个数组 start,由于数组是从0开始的,我们就姑且认定根结点的深度为0,不影响结果。我们从根结点进入,深度为0,位置为1,进入递归函数。首先判断,如果当前结点为空,那么直接返回,然后判断如果当前深度大于 start 数组的长度,说明当前到了新的一层的最左结点,我们将当前位置存入 start 数组中。然后我们用 idx - start[h] + 1 来更新结果 res。这里 idx 是当前结点的位置,start[h] 是当前层最左结点的位置。然后对左右子结点分别调用递归函数,注意左右子结点的位置可以直接计算出来,代码参见评论区二楼。我们也可以让递归函数直接返回最大宽度了,但是解题思路没有啥区别,代码参见评论区三楼。这两种方法之前都能通过 OJ,直到后来加了一个很极端的 test case,使得二者都整型溢出了 Signed Integer Overflow,原因是这里每层都只有1个结点,而我们代码中坐标每次都要乘以2的,所以到32层以后就直接溢出了。为了避免溢出的问题,需要做些优化,就是要统计每层的结点数,若该层只有一个结点,那么该层结点的坐标值重置为1,这样就可以避免溢出了。所以 DFS 的解法就不能用了,只能用层序遍历,迭代的方法来写,这里使用了队列 queue 来辅助运算,queue 里存的是一个 pair,结点和其当前位置,在进入新一层的循环时,首先要判断该层是否只有1个结点,是的话重置结点坐标位置,再将首结点的位置保存出来当作最左位置,然后对于遍历到的结点,都更新右结点的位置,遍历一层的结点后来计算宽度更新结果 res,参见代码如下:

 

class Solution {
public:
    int widthOfBinaryTree(TreeNode* root) {
        if (!root) return 0;
        int res = 0;
        queue<pair<TreeNode*,int>> q;
        q.push({root, 1});
        while (!q.empty()) {
            if (q.size() == 1) q.front().second = 1;
            int left = q.front().second, right = left, n = q.size();
            for (int i = 0; i < n; ++i) {
                auto t = q.front().first; 
                right = q.front().second; q.pop();
                if (t->left) q.push({t->left, right * 2});
                if (t->right) q.push({t->right, right * 2 + 1});
            }
            res = max(res, right - left + 1);
        }
        return res;
    }
};

 

Github 同步地址:

https://github.com/grandyang/leetcode/issues/662

 

参考资料:

https://leetcode.com/problems/maximum-width-of-binary-tree/

https://leetcode.com/problems/maximum-width-of-binary-tree/discuss/327721/cpp-bfs-solution

https://leetcode.com/problems/maximum-width-of-binary-tree/discuss/106654/javac-very-simple-dfs-solution

https://leetcode.com/problems/maximum-width-of-binary-tree/discuss/106645/cjava-bfsdfs3liner-clean-code-with-explanation

 

LeetCode All in One 题目讲解汇总(持续更新中…)


转载请注明来源于 Grandyang 的博客 (grandyang.com),欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 grandyang@qq.com

💰


微信打赏


Venmo 打赏

(欢迎加入博主的知识星球,博主将及时答疑解惑,并分享刷题经验与总结,试运营期间前五十位可享受半价优惠~)

×

Help us with donation