Given two strings representing two complex numbers.
You need to return a string representing their multiplication. Note i2 = -1 according to the definition.
Example 1:
**Input:** "1+1i", "1+1i"
**Output:** "0+2i"
**Explanation:** (1 + i) * (1 + i) = 1 + i
2
+ 2 * i = 2i, and you need convert it to the form of 0+2i.
Example 2:
**Input:** "1+-1i", "1+-1i"
**Output:** "0+-2i"
**Explanation:** (1 - i) * (1 - i) = 1 + i
2
- 2 * i = -2i, and you need convert it to the form of 0+-2i.
Note:
- The input strings will not have extra blank.
- The input strings will be given in the form of a+bi , where the integer a and b will both belong to the range of [-100, 100]. And the output should be also in this form.
这道题让我们求复数的乘法,有关复数的知识最早还是在本科的复变函数中接触到的,难起来还真是难。但是这里只是最简单的乘法,只要利用好定义i2=-1就可以解题,而且这道题的另一个考察点其实是对字符的处理,我们需要把字符串中的实部和虚部分离开并进行运算,那么我们可以用STL中自带的find_last_of函数来找到加号的位置,然后分别拆出实部虚部,进行运算后再变回字符串,参见代码如下:
解法一:
class Solution {
public:
string complexNumberMultiply(string a, string b) {
int n1 = a.size(), n2 = b.size();
auto p1 = a.find_last_of("+"), p2 = b.find_last_of("+");
int a1 = stoi(a.substr(0, p1)), b1 = stoi(b.substr(0, p2));
int a2 = stoi(a.substr(p1 + 1, n1 - p1 - 2));
int b2 = stoi(b.substr(p2 + 1, n2 - p2 - 2));
int r1 = a1 * b1 - a2 * b2, r2 = a1 * b2 + a2 * b1;
return to_string(r1) + "+" + to_string(r2) + "i";
}
};
下面这种方法利用到了字符串流类istringstream来读入字符串,直接将实部虚部读入int变量中,注意中间也要把加号读入char变量中,然后再进行运算即可,参见代码如下:
解法二:
class Solution {
public:
string complexNumberMultiply(string a, string b) {
istringstream is1(a), is2(b);
int a1, a2, b1, b2, r1, r2;
char plus;
is1 >> a1 >> plus >> a2;
is2 >> b1 >> plus >> b2;
r1 = a1 * b1 - a2 * b2, r2 = a1 * b2 + a2 * b1;
return to_string(r1) + "+" + to_string(r2) + "i";
}
};
下面这种解法实际上是C语言的解法,用到了sscanf这个读入字符串的函数,需要把string转为cost char*型,然后标明读入的方式和类型,再进行运算即可,参见代码如下:
解法三:
class Solution {
public:
string complexNumberMultiply(string a, string b) {
int a1, a2, b1, b2, r1, r2;
sscanf(a.c_str(), "%d+%di", &a1, &a2);
sscanf(b.c_str(), "%d+%di", &b1, &b2);
r1 = a1 * b1 - a2 * b2, r2 = a1 * b2 + a2 * b1;
return to_string(r1) + "+" + to_string(r2) + "i";
}
};
参考资料:
https://discuss.leetcode.com/topic/84261/java-3-liner
https://discuss.leetcode.com/topic/84382/c-using-stringstream
https://discuss.leetcode.com/topic/84323/java-elegant-solution
https://discuss.leetcode.com/topic/84508/cpp-solution-with-sscanf
LeetCode All in One 题目讲解汇总(持续更新中…)
转载请注明来源于 Grandyang 的博客 (grandyang.com),欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 grandyang@qq.com