Given a picture consisting of black and white pixels, and a positive integer N, find the number of black pixels located at some specific row R and column C that align with all the following rules:
- Row R and column C both contain exactly N black pixels.
- For all rows that have a black pixel at column C, they should be exactly the same as row R
The picture is represented by a 2D char array consisting of ‘B’ and ‘W’, which means black and white pixels respectively.
Example:
**Input:**
[['W', 'B', 'W', 'B', 'B', 'W'],
['W', 'B', 'W', 'B', 'B', 'W'],
['W', 'B', 'W', 'B', 'B', 'W'],
['W', 'W', 'B', 'W', 'B', 'W']]
N = 3
**Output:** 6
**Explanation:** All the bold 'B' are the black pixels we need (all 'B's at column 1 and 3).
0 1 2 3 4 5 column index
0 [['W', **'B'** , 'W', **'B'** , 'B', 'W'],
1 ['W', **'B'** , 'W', **'B'** , 'B', 'W'],
2 ['W', **'B'** , 'W', **'B'** , 'B', 'W'],
3 ['W', 'W', 'B', 'W', 'B', 'W']]
row index
Take 'B' at row R = 0 and column C = 1 as an example:
Rule 1, row R = 0 and column C = 1 both have exactly N = 3 black pixels.
Rule 2, the rows have black pixel at column C = 1 are row 0, row 1 and row 2. They are exactly the same as row R = 0.
Note:
1. The range of width and height of the input 2D array is [1,200].
这道题是之前那道Lonely Pixel I的拓展,我开始以为这次要考虑到对角线的情况,可是这次题目却完全换了一种玩法。给了一个整数N,说对于均含有N个个黑像素的某行某列,如果该列中所有的黑像素所在的行都相同的话,该列的所有黑像素均为孤独的像素,让我们统计所有的这样的孤独的像素的个数。那么跟之前那题类似,我们还是要统计每一行每一列的黑像素的个数,而且由于条件二中要比较各行之间是否相等,如果一个字符一个字符的比较写起来比较麻烦,我们可以用个trick,把每行的字符连起来,形成一个字符串,然后直接比较两个字符串是否相等会简单很多。然后我们遍历每一行和每一列,如果某行和某列的黑像素刚好均为N,我们遍历该列的所有黑像素,如果其所在行均相等,则说明该列的所有黑像素均为孤独的像素,将个数加入结果res中,然后将该行的黑像素统计个数清零,以免重复运算,这样我们就可以求出所有的孤独的像素了,参见代码如下:
解法一:
class Solution {
public:
int findBlackPixel(vector<vector<char>>& picture, int N) {
if (picture.empty() || picture[0].empty()) return 0;
int m = picture.size(), n = picture[0].size(), res = 0, k = 0;
vector<int> rowCnt(m, 0), colCnt(n, 0);
vector<string> rows(m, "");
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
rows[i].push_back(picture[i][j]);
if (picture[i][j] == 'B') {
++rowCnt[i];
++colCnt[j];
}
}
}
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (rowCnt[i] == N && colCnt[j] == N) {
for (k = 0; k < m; ++k) {
if (picture[k][j] == 'B') {
if (rows[i] != rows[k]) break;
}
}
if (k == m) {
res += colCnt[j];
colCnt[j] = 0;
}
}
}
}
return res;
}
};
看到论坛中的比较流行的解法是用哈希表来做的,建立黑像素出现个数为N的行和其出现次数之间的映射,然后我们就只需要统计每列的黑像素的个数,然后我们遍历哈希表,找到出现次数刚好为N的行,说明矩阵中有N个相同的该行,而且该行中的黑像素的个数也刚好为N个,那么第二个条件就已经满足了,我们只要再满足第一个条件就行了,我们在找黑像素为N个的列就行了,有几列就加几个N即可,参见代码如下:
解法二:
class Solution {
public:
int findBlackPixel(vector<vector<char>>& picture, int N) {
if (picture.empty() || picture[0].empty()) return 0;
int m = picture.size(), n = picture[0].size(), res = 0;
vector<int> colCnt(n, 0);
unordered_map<string, int> u;
for (int i = 0; i < m; ++i) {
int cnt = 0;
for (int j = 0; j < n; ++j) {
if (picture[i][j] == 'B') {
++colCnt[j];
++cnt;
}
}
if (cnt == N) ++u[string(picture[i].begin(), picture[i].end())];
}
for (auto a : u) {
if (a.second != N) continue;
for (int i = 0; i < n; ++i) {
res += (a.first[i] == 'B' && colCnt[i] == N) ? N : 0;
}
}
return res;
}
};
类似题目:
参考资料:
https://discuss.leetcode.com/topic/81686/verbose-java-o-m-n-solution-hashmap/2
https://discuss.leetcode.com/topic/87164/a-c-solution-based-on-the-top-rated-issue
LeetCode All in One 题目讲解汇总(持续更新中…)
转载请注明来源于 Grandyang 的博客 (grandyang.com),欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 grandyang@qq.com