The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), for N > 1.
Given N
, calculate F(N)
.
Example 1:
Input: 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Note:
0 ≤ N
≤ 30.
这道题是关于斐波那契数列的,这个数列想必我们都听说过,简而言之,除了前两个数字之外,每个数字等于前两个数字之和。举个生动的例子,大学食堂里今天的汤是昨天的汤加上前天的汤。哈哈,是不是瞬间记牢了。题目没让返回整个数列,而是直接让返回位置为N的数字。那么还是要构建整个斐波那契数组,才能知道位置N上的数字。像这种有规律有 pattern 的数组,最简单的方法就是使用递归啦,先把不合规律的前两个数字处理了,然后直接对 N-1 和 N-2 调用递归,并相加返回即可,参见代码如下:
解法一:
class Solution {
public:
int fib(int N) {
if (N <= 1) return N;
return fib(N - 1) + fib(N - 2);
}
};
上面的写法虽然简单,但是并不高效,因为有大量的重复计算,我们希望每个值只计算一次,所以可以使用动态规划 Dynamic Programming 来做,建立一个大小为 N+1 的 dp 数组,其中 dp[i] 为位置i上的数字,先初始化前两个分别为0和1,然后就可以开始更新整个数组了,状态转移方程就是斐波那契数组的性质,最后返回 dp[N] 即可,参见代码如下:
解法二:
class Solution {
public:
int fib(int N) {
if (N <= 1) return N;
vector<int> dp(N + 1);
dp[0] = 0; dp[1] = 1;
for (int i = 2; i <= N; ++i) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[N];
}
};
我们可以对上面解法进行空间上的进一步优化,由于当前数字只跟前两个数字有关,所以不需要保存整个数组,而是只需要保存前两个数字就行了,前一个数字用b表示,再前面的用a表示。a和b分别初始化为0和1,代表数组的前两个数字。然后从位置2开始更新,先算出a和b的和 sum,然后a更新为b,b更新为 sum。最后返回b即可,参见代码如下:
解法三:
class Solution {
public:
int fib(int N) {
if (N <= 1) return N;
int a = 0, b = 1;
for (int i = 2; i <= N; ++i) {
int sum = a + b;
a = b;
b = sum;
}
return b;
}
};
给下面的这种解法跪了,直接 hardcode 了所有N范围内的斐波那契数字,然后直接返回,这尼玛诸葛孔明的棺材板快压不住了。。。我从未见过如此。。。
解法四:
class Solution {
public:
int fib(int N) {
vector<int> fibs{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040};
return fibs[N];
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/509
类似题目:
Split Array into Fibonacci Sequence
Length of Longest Fibonacci Subsequence
参考资料:
https://leetcode.com/problems/fibonacci-number/
https://leetcode.com/problems/fibonacci-number/discuss/215992/Java-Solutions
https://leetcode.com/problems/fibonacci-number/discuss/216245/Java-O(1)-time
LeetCode All in One 题目讲解汇总(持续更新中…)
转载请注明来源于 Grandyang 的博客 (grandyang.com),欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 grandyang@qq.com