Given an unsorted integer array nums
, return the smallest missing positive integer.
You must implement an algorithm that runs in O(n)
time and uses O(1)
auxiliary space.
Example 1:
Input: nums = [1,2,0]
Output: 3
Explanation: The numbers in the range [1,2] are all in the array.
Example 2:
Input: nums = [3,4,-1,1]
Output: 2
Explanation: 1 is in the array but 2 is missing.
Example 3:
Input: nums = [7,8,9,11,12]
Output: 1
Explanation: The smallest positive integer 1 is missing.
Constraints:
1 <= nums.length <= 10^5
-2^31 <= nums[i] <= 2^31 - 1
这道题让我们找缺失的首个正数,由于限定了 O(n) 的时间,所以一般的排序方法都不能用,最开始博主没有看到还限制了空间复杂度,所以想到了用 HashSet 来解,这个思路很简单,把所有的数都存入 HashSet 中,然后循环从1开始递增找数字,哪个数字找不到就返回哪个数字,如果一直找到了最大的数字(这里是 nums 数组的长度),则加1后返回结果 res,参见代码如下:
解法一:
// NOT constant space
class Solution {
public:
int firstMissingPositive(vector<int>& nums) {
unordered_set<int> st(nums.begin(), nums.end());
int res = 1, n = nums.size();
while (res <= n) {
if (!st.count(res)) return res;
++res;
}
return res;
}
};
但是上面的解法不是 O(1) 的空间复杂度,所以需要另想一种解法,既然不能建立新的数组,那么只能覆盖原有数组,思路是把1放在数组第一个位置 nums[0],2放在第二个位置 nums[1],即需要把 nums[i] 放在 nums[nums[i] - 1]上,遍历整个数组,如果 nums[i] != i + 1, 而 nums[i] 为整数且不大于n,另外 nums[i] 不等于 nums[nums[i] - 1] 的话,将两者位置调换,如果不满足上述条件直接跳过,最后再遍历一遍数组,如果对应位置上的数不正确则返回正确的数,参见代码如下:
解法二:
class Solution {
public:
int firstMissingPositive(vector<int>& nums) {
int n = nums.size();
for (int i = 0; i < n; ++i) {
while (nums[i] > 0 && nums[i] <= n && nums[nums[i] - 1] != nums[i]) {
swap(nums[i], nums[nums[i] - 1]);
}
}
for (int i = 0; i < n; ++i) {
if (nums[i] != i + 1) return i + 1;
}
return n + 1;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/41
类似题目:
Find All Numbers Disappeared in an Array
Smallest Number in Infinite Set
Maximum Number of Integers to Choose From a Range I
Smallest Missing Non-negative Integer After Operations
Maximum Number of Integers to Choose From a Range II
参考资料:
https://leetcode.com/problems/first-missing-positive/
LeetCode All in One 题目讲解汇总(持续更新中…)
(欢迎加入博主的知识星球,博主将及时答疑解惑,并分享刷题经验与总结,快快加入吧~)
微信打赏
|
Venmo 打赏
—|—
转载请注明来源于 Grandyang 的博客 (grandyang.com),欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 grandyang@qq.com