Given a collection of candidate numbers (candidates
) and a target number (target
), find all unique combinations in candidates
where the candidate numbers sum to target
.
Each number in candidates
may only be used once in the combination.
Note: The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [10,1,2,7,6,1,5], target = 8
Output:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]
Example 2:
Input: candidates = [2,5,2,1,2], target = 5
Output:
[
[1,2,2],
[5]
]
Constraints:
1 <= candidates.length <= 100
1 <= candidates[i] <= 50
1 <= target <= 30
这道题跟之前那道 Combination Sum 本质没有区别,只需要改动一点点即可,之前那道题给定数组中的数字可以重复使用,而这道题不能重复使用,只需要在之前的基础上修改几个地方即可,首先要给数组排个序,然后在递归的 for 循环里加上 if (i > start && num[i] == num[i - 1]) continue; 这样可以防止 res 中出现重复项,最后就在递归调用 dfs 里面的参数换成 i+1,这样就不会重复使用数组中的数字了,代码如下:
解法一:
class Solution {
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<vector<int>> res;
vector<int> cur;
sort(candidates.begin(), candidates.end());
dfs(candidates, target, 0, cur, res);
return res;
}
void dfs(vector<int>& candidates, int target, int start, vector<int>& cur, vector<vector<int>>& res) {
if (target < 0) return;
if (target == 0) { res.push_back(cur); return; }
for (int i = start; i < candidates.size(); ++i) {
if (i > start && candidates[i] == candidates[i - 1]) continue;
cur.push_back(candidates[i]);
dfs(candidates, target - candidates[i], i + 1, cur, res);
cur.pop_back();
}
}
};
对于之前的解法二可以通过稍微改动而适用于这里,同样的在处理当前数字 candidates[i] 时,和之前的数字比较,要跳过重复数字。其次就是在为下次递归创建新数组时,不能包括当前的数字,这样的话才能保证不重复使用数字,参见代码如下:
解法二:
class Solution {
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<vector<int>> res;
sort(candidates.begin(), candidates.end());
for (int i = 0; i < candidates.size(); ++i) {
if (candidates[i] > target) break;
if (candidates[i] == target) { res.push_back({candidates[i]}); break; }
if (i > 0 && candidates[i] == candidates[i - 1]) continue;
vector<int> vec = vector<int>(candidates.begin() + i + 1, candidates.end());
vector<vector<int>> tmp = combinationSum2(vec, target - candidates[i]);
for (auto a : tmp) {
a.insert(a.begin(), candidates[i]);
res.push_back(a);
}
}
return res;
}
};
对于 DP 解法来说,改变就比较大了,甚至可以说是完全不同的解法也不为过,这种原数组中有重复数字,且每个数字只能使用一次的要求,不太适合用 DP 来做,但也可以强行使用 DP 来做,只不过稍微有点麻烦。
解法三:
class Solution {
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<vector<vector<int>>> dp(target + 1);
dp[0].resize(1);
map<int, int> numCnt;
for (int num : candidates) {
++numCnt[num];
}
for (auto a : numCnt) {
int num = a.first, cnt = a.second;
for (int i = target - num; i >= 0; --i) {
for (auto v : dp[i]) {
int sum = i;
for (int k = 0; k < cnt && sum <= target - num; ++k) {
sum += num;
v.push_back(num);
dp[sum].push_back(v);
}
}
}
}
return dp[target];
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/40
类似题目:
参考资料:
https://leetcode.com/problems/combination-sum-ii/
LeetCode All in One 题目讲解汇总(持续更新中…)
(欢迎加入博主的知识星球,博主将及时答疑解惑,并分享刷题经验与总结,快快加入吧~)
微信打赏
|
Venmo 打赏
—|—
转载请注明来源于 Grandyang 的博客 (grandyang.com),欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 grandyang@qq.com