Given a positive integer num , write a function which returns True if num is a perfect square else False.
Note: Do not use any built-in library function such as sqrt
.
Example 1:
Input: 16
Returns: True
Example 2:
Input: 14
Returns: False
Credits:
Special thanks to @elmirap for adding this problem and creating all test cases.
这道题给了我们一个数,让我们判断其是否为完全平方数,那么显而易见的是,肯定不能使用 brute force,这样太不高效了,那么最小是能以指数的速度来缩小范围,那么我最先想出的方法是这样的,比如一个数字 49,我们先对其除以2,得到 24,发现 24 的平方大于 49,那么再对 24 除以2,得到 12,发现 12 的平方还是大于 49,再对 12 除以2,得到6,发现6的平方小于 49,于是遍历6到 12 中的所有数,看有没有平方等于 49 的,有就返回 true,没有就返回 false,参见代码如下:
解法一:
class Solution {
public:
bool isPerfectSquare(int num) {
if (num == 1) return true;
long x = num / 2, t = x * x;
while (t > num) {
x /= 2;
t = x * x;
}
for (int i = x; i <= 2 * x; ++i) {
if (i * i == num) return true;
}
return false;
}
};
下面这种方法也比较高效,从1搜索到 sqrt(num),看有没有平方正好等于 num 的数:
解法二:
class Solution {
public:
bool isPerfectSquare(int num) {
for (int i = 1; i <= num / i; ++i) {
if (i * i == num) return true;
}
return false;
}
};
我们也可以使用二分查找法来做,要查找的数为 mid*mid,参见代码如下:
解法三:
class Solution {
public:
bool isPerfectSquare(int num) {
long left = 0, right = num;
while (left <= right) {
long mid = left + (right - left) / 2, t = mid * mid;
if (t == num) return true;
if (t < num) left = mid + 1;
else right = mid - 1;
}
return false;
}
};
下面这种方法就是纯数学解法了,利用到了这样一条性质,完全平方数是一系列奇数之和,例如:
1 = 1
4 = 1 + 3
9 = 1 + 3 + 5
16 = 1 + 3 + 5 + 7
25 = 1 + 3 + 5 + 7 + 9
36 = 1 + 3 + 5 + 7 + 9 + 11
….
1+3+…+(2n-1) = (2n-1 + 1) n/2 = n* n
这里就不做证明了,我也不会证明,知道了这条性质,就可以利用其来解题了,时间复杂度为 O(sqrt(n))。
解法四:
class Solution {
public:
bool isPerfectSquare(int num) {
int i = 1;
while (num > 0) {
num -= i;
i += 2;
}
return num == 0;
}
};
下面这种方法是第一种方法的类似方法,更加精简了,时间复杂度为 O(lgn):
解法五:
class Solution {
public:
bool isPerfectSquare(int num) {
long x = num;
while (x * x > num) {
x = (x + num / x) / 2;
}
return x * x == num;
}
};
这道题其实还有 O(1) 的解法,这你敢信?简直太丧心病狂了,详情请参见论坛上的这个帖子。
Github 同步地址:
https://github.com/grandyang/leetcode/issues/367
类似题目:
参考资料:
https://leetcode.com/problems/valid-perfect-square/
LeetCode All in One 题目讲解汇总(持续更新中…)
转载请注明来源于 Grandyang 的博客 (grandyang.com),欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 grandyang@qq.com