Given the root
of a binary tree, the level of its root is 1
, the level of its children is 2
, and so on.
Return the smallest level x
such that the sum of all the values of nodes at level x
is maximal.
Example 1:
Input: root = [1,7,0,7,-8,null,null]
Output: 2
Explanation:
Level 1 sum = 1.
Level 2 sum = 7 + 0 = 7.
Level 3 sum = 7 + -8 = -1.
So we return the level with the maximum sum which is level 2.
Example 2:
Input: root = [989,null,10250,98693,-89388,null,null,null,-32127]
Output: 2
Constraints:
- The number of nodes in the tree is in the range
[1, 104]
. -105 <= Node.val <= 105
这道题说是给了一棵二叉树,根结点是层数1,其子结点是层数2,依次类推,让找到最小的层数,使得该层上的结点值之和最大。这里所谓的最小的层数,实际上就是说当层结点值之和相同的时候,取层数较小的层。说白了这道题的难点就是如何求每一层的结点值之和,肯定需要遍历整个二叉树,用什么样的遍历方式呢,当然是用层序最方便啦,LeetCode 中有考察层序遍历的题,Binary Tree Level Order Traversal 和
Binary Tree Level Order Traversal II,做过这两道的话,这道题也就没啥难度了。这里还是用 queue 来辅助遍历,先将根结点放入队列,然后开始 while 循环遍历,先将初始化为0的 level 自增1,因为根结点是层数1。因为当前 queue 里的所有结点都属于同一层,需要一起遍历完,为了防止后来新加入 queue 的结点污染,这里用个 for 循环遍历当前层的所有结点,注意 q.size() 必须放在初始化里,而不能是判断条件里,因为其会改变,累加每层所有的结点值之和到 sum,然后跟全局的 mx 对比,若 sum 大于 mx,则更新 sum 为 mx,同时更新 res 为当前层数,参见代码如下:
解法一:
class Solution {
public:
int maxLevelSum(TreeNode* root) {
int res = 1, mx = root->val, level = 0;
queue<TreeNode*> q{{root}};
while (!q.empty()) {
++level;
int sum = 0;
for (int i = q.size(); i > 0; --i) {
TreeNode* t = q.front(); q.pop();
sum += t->val;
if (t->left) q.push(t->left);
if (t->right) q.push(t->right);
}
if (mx < sum) {
mx = sum;
res = level;
}
}
return res;
}
};
我们也可以强行用递归来做,由于层数可能一直会变,所以用一个数组 sums 来记录每一层的结点值之和。在递归函数中,若结点为空,直接返回。否则看若 sums 的大小于 level,说明应该增加 sums 的大小,用个 resize 来增加。然后就把当前结点值加入到 sums[level-1] 中,再分别对左右子结点调用递归函数即可。sums 数组更新好了,需要找到其中的最大值的位置,这里使用了一些 STL 内置的函数来做,用 max_element 来找最大值,用 distance 来求和第一个数字之间的距离,最后再加1即可,参见代码如下:
解法二:
class Solution {
public:
int maxLevelSum(TreeNode* root) {
vector<int> sums;
helper(root, 1, sums);
return distance(begin(sums), max_element(begin(sums), end(sums))) + 1;
}
void helper(TreeNode* node, int level, vector<int>& sums) {
if (!node) return;
if (sums.size() < level) sums.resize(level);
sums[level - 1] += node->val;
helper(node->left, level + 1, sums);
helper(node->right, level + 1, sums);
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/1161
类似题目:
Binary Tree Level Order Traversal
Binary Tree Level Order Traversal II
参考资料:
https://leetcode.com/problems/maximum-level-sum-of-a-binary-tree/
LeetCode All in One 题目讲解汇总(持续更新中…)
转载请注明来源于 Grandyang 的博客 (grandyang.com),欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 grandyang@qq.com